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Probabilistic Numerics

This is an active new field that challenges historical perspectives on
numerical analysis.

It is important for this community to develop new methods with an eye
to overcoming challenges that lay ahead.

This talk focuses on calibration for forward problems defined by the
solution of ordinary and partial differential equations. If you’re not
already convinced that probabilistic numerics is useful in this setting ...
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Example - galaxy simulation (Kim et al., 2016)
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Example - galaxy simulation (Kim et al., 2016)

• These are not realizations of a field (the model is deterministic)

• The initial conditions and inputs are held fixed

• How do we evaluate these numerical solver outputs?
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Perspectives on Probabilistic Numerics

Probability measures on numerical solutions via randomization

• Conrad et al (2015/16), Lie et al (2017)

• defined outside of the Bayesian framework, but resulting algorithms
overlap

Bayesian uncertainty quantification for differential equations

• Skilling (1991), Chkrebtii et al (2013/16), Arnold et al (2013)

• defined outside of the numerical analysis framework, but resulting
methods can be analogous in some sense

Bayesian numerical methods

• Hennig & Hauberg (2013/14), Schober et al (2014).

• computationally efficient probabilistic GP based methods; can
recover numerical solvers in the mean
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Calibrating stochastic computer models

Regardless of the perspective, the deterministic but unknown forward
model is replaced by a stochastic process: for fixed inputs, the output is
a random variable with (often) unknown distribution.

Pratola & Chkrebtii (2017+) describe a hierarchical framework to
calibrate stochastic simulators with highly structured output
uncertainty/variability.
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Calibration problem

We wish to estimate the unknowns, θ ∈ Θ, given observations,

y(xt) = A {u(xt , θ)}+ ε(xt), xt ∈ X , t = 1, . . . ,T ,

of the deterministic state ut = u(xt , θ) transformed via an observation
process A, and contaminated with stochastic noise ε.

The likelihood defines a discrepancy between the model and the data:

f (y1:T | θ) ∝ ρ {y1:T − A (u1:T )}
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The Bayesian paradigm

Bayesian inference is concerned with modeling degree of belief about an
unknown quantity via probability models.

For example, we may not know θ ∈ Θ but we may have some prior belief
about, e.g., its range, most probable values,

θ ∼ π(θ).

We seek to update our prior belief by conditioning on new information,
y1:T ∈ Y, e.g., data, model evaluations, via Bayes’ Rule:

p(θ | y1:T ) =
p(y1:T | θ)π(θ)∫
p(y1:T | θ)π(θ) dθ

∝ p(y1:T | θ)π(θ).
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A Hierarchical model representation

Hierarchical modelling enables inference over the parameters of a
stochastic state,

[y1:T | u1:T , θ] ∝ ρ {y1:T − A (u1:T )}

[u1:T | θ] ∼ p(u1:T | θ)

[θ] ∼ π(θ).

When p(u1:T | θ) is not known in closed form, exact inference may still
be possible via Monte Carlo, using forward-simulation from the model.
However, this is often computationally prohibitive.
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For probabilistic numerics

If the state is deterministic but defined implicitly by a system of
differential equations, our uncertainty about the solution can be modelled
probabilistically,

[y1:T | u1:T , θ] ∝ ρ [y1:T − A (u1:T )]

[u1:T | θ] ∼ a probability measure representing uncertainty
in the solution given discretization of size N

[θ] ∼ π(θ).

We use the Bayesian uncertainty quantification approach to model this
middle layer.

Slide 10/29



cal i brat i on w ith d i s cret i z at i on uncerta i nty ok sana chkrebt i i

Bayesian UQ for differential equations

Given θ and for linear operator D consider the initial value problem,{
Du = f (x , u) , x ∈ X ,
u = u0 x ∈ ∂X .

We may have some prior knowledge about smoothness, boundary
conditions, etc., described by a prior measure,

u ∼ π, x ∈ X

We seek to update our prior knowledge by conditioning on model
interrogations, f1:N via Bayes’ Rule,

p(u(x) | f1:N) =
p(f1:N | u(x))π(u(x))∫

p(f1:N | u(x))π (u(x)) du(x)
∝ p (f1:N | u(x)) π (u(x))
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Prior uncertainty in the unknown solution

The exact solution function u is deterministic, but unknown. We may
describe our prior uncertainty via a probability model defined on the
space of suitably smooth derivatives, e.g.,

u ∼ GP(m0,C 0), m0 : X → R, C 0 : X × X → R

with the constraint m0 = u0, x ∈ ∂X .

This yields a joint prior on the fixed but unknown state and its
derivative(s)

[
u
Du

]
∼ GP

([
m0

Dm0

]
,

[
C 0 C 0D∗

DC 0 DC 0D∗

])
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Interrogating the model recursively

1 Draw a sample from the marginal predictive distribution on the state
at the next discretization grid point sn+1 ∈ X , 1 ≤ n < N

u(sn+1) ∼ p (u(sn+1) | f1:n)

2 Evaluate the RHS at u(sn+1) to obtain a model interrogation,

fn+1 = f (sn+1, u(sn+1))

3 Model interrogations as “noisy” measurements of Du:

fn+1 | Du, f1:n ∼ N
(
Du(sn+1),Λ(sn)

)
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Sequential Bayesian updating

Updating our knowledge about the true but unknown solution given the
new interrogation trajectory fn+1

[
u
Du
| fn+1

]
∼ GP

([
mn+1

Dmn+1

]
,

[
Cn+1 Cn+1D∗

DCn+1 DCn+1D∗

])

where,

mn+1 = mn + Kn (fn+1 −mn(sn+1))

Cn+1 = Cn − KnDCn∗

Kn = CnD∗ (DCn + Λ(sn))−1

This becomes the prior for the next update.
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Bayesian UQ for differential equations

Due to the Markov property, we cannot condition the solution on
multiple trajectories f j1:N , j = 1, . . . , J simultaneously. In fact, the
posterior over the unknown solution turns out to be a continuous mixture
of Gaussian processes,

[u | θ,N] =

∫ ∫
[u,Du | f1:N , θ,N] d(Du) d f1:N .

Samples from this posterior can be obtained via Monte Carlo.
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Example - Lorenz63 forward model

A probability statement over probable trajectories given fixed model
parameters and initial conditions for the Lorenz63 model:

1000 draws for the probabilistic forward model for the Lorenz63 system given fixed
initial states and model parameters in the chaotic regime.
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Example - Lorenz63 forward model

1000 draws from forward model for Lorenz63 system at four fixed time points.
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For probabilistic numerics

If the state is deterministic but defined implicitly by a system of
differential equations, our uncertainty about the solution can be modelled
probabilistically,

[y1:T | u1:T , θ] ∝ ρ [y1:T − A (u1:T )]

[u1:T | θ] ∼ a probability measure representing uncertainty
in the solution given discretization of size N

[θ] ∼ π(θ).

We use the Bayesian uncertainty quantification approach to model this
middle layer.
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Computer model emulation

We interrogate the model at M regimes, θ1:M = (θ1, . . . , θM)>. Each
interrogation is comprised of an ensemble of K output samples.

Let ũ1:K1:T (θ1:M) denote the ensemble of K output simulations for each of
the regimes θ1:M .

[y1:T | ũ1:K1:T (θ1:M), u1:T , δ1:T , θ] ∝ ρ [y1:T − A (u1:T (θ))− δ1:T ]

[ũk1:T (θm) | uk1:T , θ] ∼ N
(
uk1:T (θm),Λ

)
k = 1, . . . ,K[

uk1:T | θ
]
∼ generative stochastic model

[θ, δ] ∼ π(θ, δ).
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A Hierarchical model representation

Challenges of MCMC sampling from the posterior include:

• Emulation based on MK model evaluations is computationally
expensive

• Models are evaluated at multiple spatio-temporal locations and over
multiple states

Our approach:

• Dimension reduction over the second (output) layer of the
hierarchical model

• We include the dimension reduction specifications within the
hierarchical model, resulting in a fully probabilistic approach
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Example: Exact vs Emulation Based Inference
in a Model of Protein Dynamics
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Inference for a model of protein dynamics

JAK-STAT chemical signaling pathway model describes concentration of
4 STAT factors by a delay differential equation system on t ∈ [0, 60],

Illustration of the JAK-STAT mechanism

d

dt
u(1)(t, θ) = −k1 u(1)(t, θ)EpoRA(t) + 2 k4 u

(4)(t − τ, θ)

d

dt
u(2)(t, θ) = k1 u

(1)(t, θ)EpoRA(t)− k2
(
u(2)(t, θ)

)2

d

dt
u(3)(t, θ) = −k3 u(3)(t, θ) + 0.5 k2

(
u(2)(t, θ)

)2

d

dt
u(4)(t, θ) = k3 u

(3)(t, θ)− k4 u
(4)(t − τ, θ)

u(i)(t, θ) = φ(i)(t), t ∈ [−τ, 0], i = 1, . . . , 4
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Inference for a model of protein dynamics

States are observed indirectly through a nonlinear transformation:

Experimental measurements

A(1) = k5
(
u(1)(t; θ) + 2u(3)(t; θ)

)
A(2) = k6

(
u(1)(t; θ) + u(2)(t; θ) + 2u(3)(t; θ)

)
A(3) = u(1)(t; θ)

A(4) =
u(3)(t; θ)

u(2)(t; θ) + u(3)(t; θ)

Observations are noisy measurements on the transformed states and
forcing function at points t = {tij}i=1,...,4;j=1,...,ni

y(t) = Ak4,k5u(t; k1, . . . , k6, τ, φ,EpoRA) + ε(t)
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Results: exact inference
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Results: emulation based inference
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Results: emulation based inference
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Kernel density estimates of the marginal stochastically calibrated posterior (gray) with
M = 100 model runs, and exact posterior (black) for the JAK-STAT system. Marginal prior

densities are shown as dotted lines.
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Thank you!
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